Injector Supports Power Inductor Testing under Bias The J2131A DC Bias Source enables accurate shunt-through inductance measurement of power inductors at various bias levels—up to and including saturation currents up to 125ADC. The J2131ABUNDLE includes the <u>J2131A DC Bias Source</u>, a <u>P9610A</u> Power Supply, <u>J2113A</u> Differential Amp, and Two (2) PDN Cables, 1 meter each. For simulation, modeling, component selection, counterfeit magnetics material detection and failure analysis, testing power inductor performance—up to and including saturation—is a key capability in the engineer's toolbox. Used with a stable, constant-current lab supply, the Picotest J2131A DC Bias Source creates stable, repeatable bias currents injected into the inductor Device Under Test (DUT). Convenient connections allow accurate shunt-through measurements of the combined signal and DC Bias Sources. This system enables engineers to know precisely the performance of power inductors under the bias currents which will be present in their actual design implementation. Without this valuable information, the engineer assumes the inductor performance is linear—which all too often, is incorrect. Figure 1: Test Setup Block Diagram In this sample application, we will demonstrate test tools that couple with your network analyzer, that support power inductor characterization. Figure 1 shows the interconnection of the Picotest power inductor J2131ABundle. **Figure 2: Inductor Mount Example** Testing under-bias performance of power inductors requires the injection of a stable, adjustable, high-current. The Picotest J2131A is a key part of this test system. In this application note, we will evaluate the performance of a planar Standex Mader PQ2007 power inductor (PQ2002-0R4-70-G) with ratings of nominal 70A (-20% @83A), 400nH and a DCR of 700μ Ohms. **Figure 3: Shunt-Through Connection Overview** # **Application Note** J2131A DC Bias Source Most well-equipped power labs have a Vector Network Analyzer (VNA). Picotest supports various versions. For this application note, the Tektronix 6-Series Mixed Signal Oscilloscope (MSO) will be used. The J2131A takes in a stable constant-current source from a lab power supply. In this case, we know the Picotest P9610A works well and is used in this application note. In its constant-current mode, a programmed current level is internally multiplied by a factor of 24 by the J2131A DC Bias Source and mixed with the signal source of the VNA. This mixed signal is applied to the power inductor DUT. There are various methods of limiting measurement errors due to ground loop currents. In this application note, we will use the J2102B Common Mode Transformer and the J2161A 2-Way Wideband Active Splitter. The output of the Tektronix waveform generator is connected to the input of the J2161A 2-Way Active Splitter to complete the test circuit wiring. The interconnect wiring is shown in the block diagram above. Engineers are urged to use high-quality cables—we don't want weak performance of cables and interconnects to be the limiting factors in these tests. Note: in the interconnect drawing below, insert a ground loop breaking Common Mode Transformer (J2102B) in series with the MSO CH 2 input. The DUT is connected to the J2131A DC Bias Source which sums the VNA output with the current bias control signal. Figure 4: Test Setup Wiring Example with J2161A Active Splitter and J2102B Common Mode Transformer # **Application Note** J2131A DC Bias Source Figure 5: 85 Amp Under-Bias Inductance Measurement By taking a measurement with the DUT connections with the DUT inductor removed (open), the mount can be characterized and subtracted from the inductor measurement. This math is shown in Formula 1. $$\frac{48A * Mount}{Mount - 48A}$$ Formula 1: Using a Math Function to De-Embed the Inductor Mount #### **Notes** - 1. The J2131A DC Bias Source includes an internal transient suppressor to protect the external test equipment if a fault occurs, for example, if the DUT inductor overheats and unsolders itself from the mount. With high currents flowing in the DUT and mount, high temperatures can melt the solder and cause an open circuit. Then, the energy stored in the inductor flux can discharge and cause Electrical Over Stress (EOS) damage. The user is urged to be aware of the fixture and inductor heating effects and make sure high currents are not applied for extended periods. - 2. The copper wiring of the inductor and mount circuit board interconnects have a positive temperature coefficient of 0.393% per degree C of temperature rise. At high currents, this resistance change can be significant. The user is urged to consider this self-heating effect and its impact on the test. ### Conclusion Many power supply topologies use power inductors in a single BH quadrant with a large DC bias current. # **Application Note** J2131A DC Bias Source **Figure 8: Single-Quadrant Inductor Operation** To properly understand, characterize, model and troubleshoot power inductors, their operation under bias current conditions must be tested. The powerful Picotest J2131A DC Bias Source enables this type of testing. ### References - [1] S. M. Sandler, Switched-Mode Power Supply Design with SPICE, Faraday Press, 2018 - [2] S. M. Sandler, Extending the Usable Range of the 2-port Shunt-Through Impedance Measurement, IEEE MTT-S Lat. Am. Microw. Conf. (LAMC), pp. 1–3, Dec 2016. - [3] S. M. Sandler, How to Measure Ultra-Low Impedance (100uOhm and Lower) PDNs, EDICON, Oct. 2018. The BH plot of Figure 8 was taken from *Switched-Mode Power Supply Design with SPICE*. Sandler, Steve, *Switched-Mode Power Supply Design with SPICE*, Faraday Press, 2018